

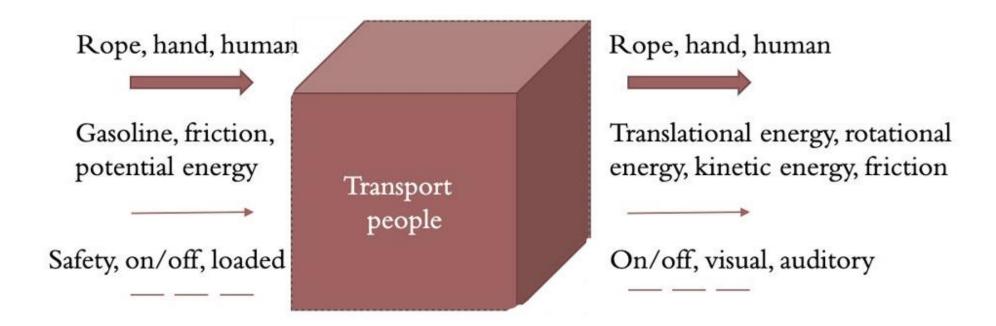
SKI HAUS TOW ROPE

Team Members:

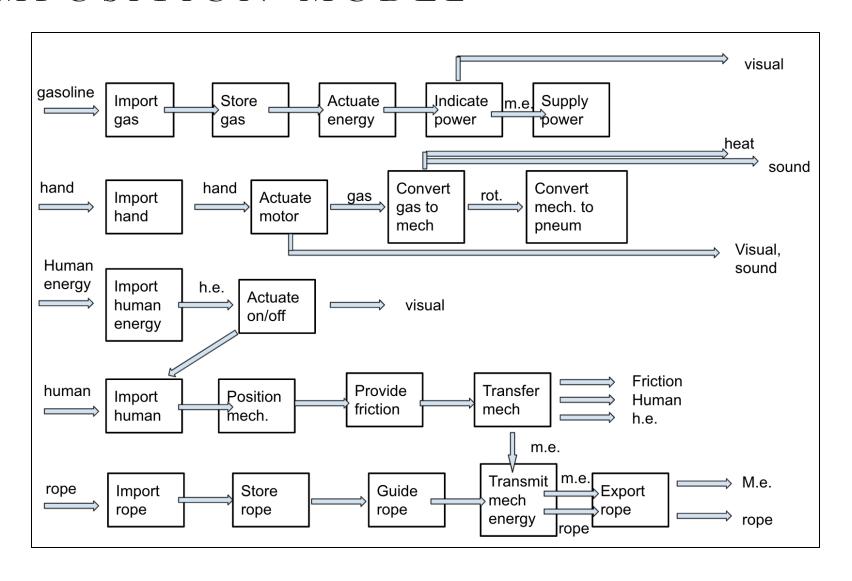
Hallie Eha

CAD Engineer and Financial Manager

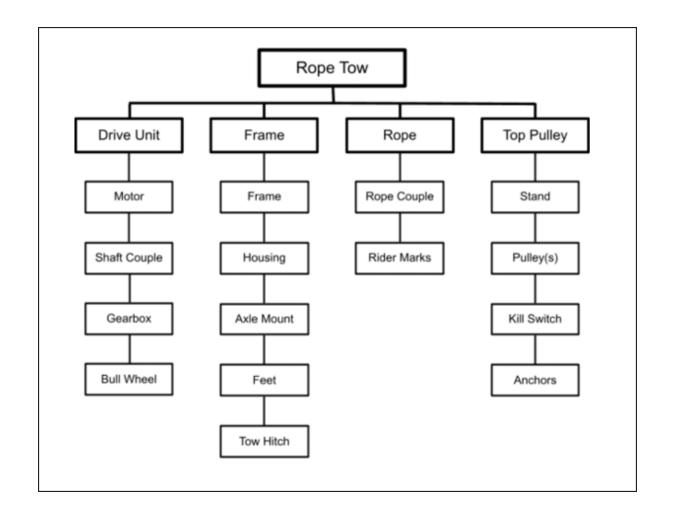
Kailey Lewis

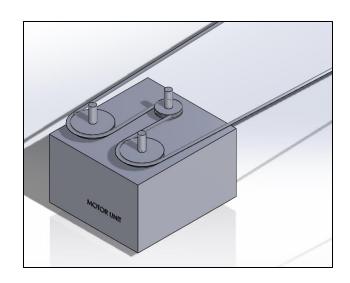

Project Manager and Test Engineer

Jesse Wells


Manufacturing Engineer and Logistics Manager

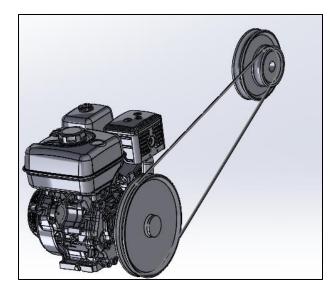
PROJECT DESCRIPTION


The Ski Haus tow rope is a portable motorized transportation device for ski resort use to pull riders back up the mountain. It's use in rail jam competitions hosted by Ski Haus at Arizona Snowbowl will ensure the safety of riders, reducing the fatigue caused by hiking. The design will cost about \$2000, weighing less than 300lbs.


DECOMPOSITION MODEL

DECOMPOSITION MODEL

CONCEPT GENERATION-SUBASSEMBLY 1 (DRIVE UNIT)

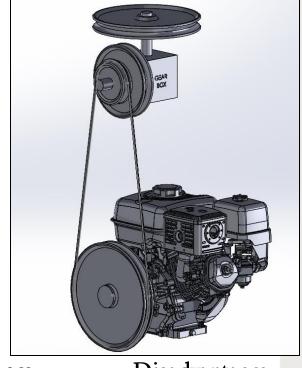


Advantages

- Compact pulley design
- Horizontal rope position
- Moderate amount of parts/sheave wheels

Disadvantages

- Attaching rope during use is difficult
 - Difficult to create tension on rope during use



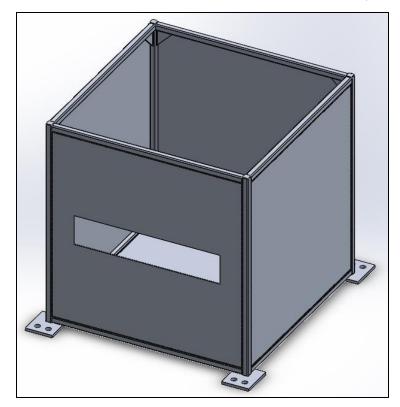
Advantages

- Easy setup when used
- Compatible with •
 horizontal drive
 shaft (no need for •
 gear box)
- Easy/simple repair

Disadvantages

- Larger frame required
- Less torque produced
 Vertical rope
- Vertical rope placement

Advantages

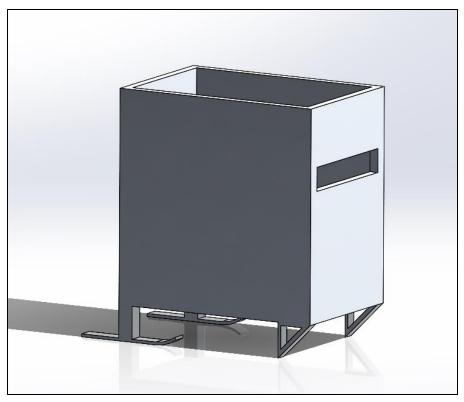

- Horizontal rope placement
- Compatible with horizontal drive shaft
- Easy setup when used

Disadvantages

- More complex frame needed (2stage frame)
- Gear box required (increase cost)

Hallie Eha - 10/5/21 - 21F09_SkiHaus

CONCEPT GENERATION-SUBASSEMBLY 2 (FRAME)



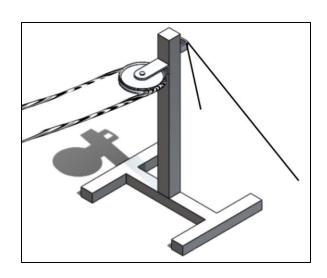
Advantages

- Sturdy
- Secure tie downs
- Fits all motorized equipment
- Easy access for repair

Disadvantages

- Bulky
- Expensive
- Not as maneuverable

Advantages

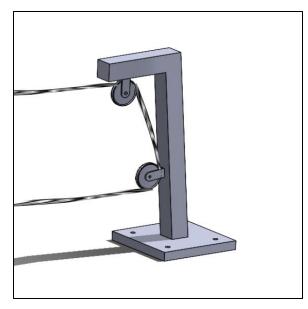

- Maneuverable
- Light
- Access for repair

Disadvantages

- Expensive
- Harder to keep from moving on slope
- Equipment may need to be stacked

Kailey Lewis - 10/5/21 - 21F09_SkiHaus

CONCEPT GENERATION-SUBASSEMBLY 3 (TOP PULLEY)



Advantages

- Affordable
- Compact/collapsible
- Simple installation

Disadvantages

- Small wheel diameter
- Not as durable
- Safety concerns

Advantages

- Keeps rope out of the way
- Durable
- Heavy for anchoring

Disadvantages

- Expensive
- Difficult transportation/installation
- Safety concerns of tipping

Advantages

- Affordable
- Compact/collapsible
- Simple installation
- Keeps ropes separate

Disadvantages

- Lightweight difficult to anchor
- More difficult to fabricate
- Center connection could be flimsy

Jesse Wells - 10/5/21 - 21F09_SkiHaus

CONCEPT EVALUATION-PUGH CHART

Criteria	drive unit		Design Alternative #2	Design Alternative #3	housing	Design Alternative #1	Design Alternative #2	Design Alternative #3	top pully	Design Alternative #1	Design Alternative #2	Design Alternative #3
Compactness		+	D	+		-	D	+		S	D	-
Cost		-		-		+		S		+		S
weight		S	Α	S		S	A	S		S	A	S
ease of operation		S		S		s		s		S		+
safety		+	T	-		S	T	S		S	T	+
Σ+		2		1		1		1		1		2
Σ-		1	U	2		1	U	0		0	U	1
ΣS		2		2		3		4		4		2
Score		1	M	-1		0	M	1		1	M	1

Drive unit – 1st design

• Application of multiple sheave wheels increases safety

Housing – 3rd design

• Smaller housing decreases weight and skis increase maneuverability

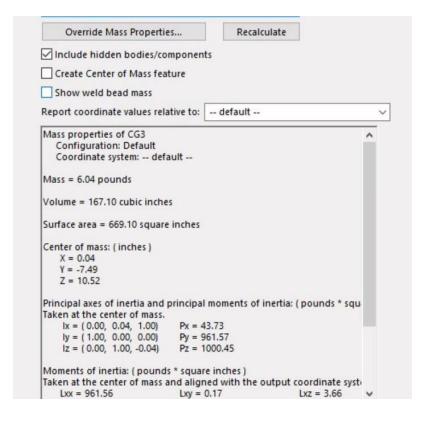
Top Pully – 3rd design

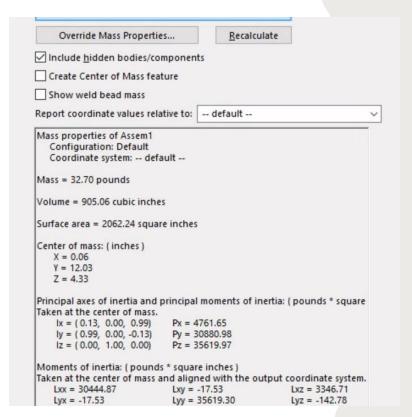
• Two sheave wheels at the top separate input from output rope, increasing safety. Also has more tie down points

Kailey Lewis - 10/5/21 - 21F09_SkiHau

CONCEPT EVALUATION: DECISION MATRIX

Score: 1-5																			
Design Criteria	W/elonf		Design Alternative #1		Design Alternative #2		Design Alternative #3		Housing	Design Alternative #1		Design Alternative #2		Design Alternative #3		Top Pulley	Design Alternative #1	L	Design Alternati
			Rating	Weight Score	Rating	Weight Score		Weight Score			Weight Score	Rating	Weight Score	Rating	Weight Score		Rating	Weight Score	Rating
Compactness	15%	6	4	4 0.6	5	4 0.6	j	3 0.45	į		2 0.3	3	4 0.6	5	5 0.75	5		3 0.45	4 5
Cost	20%	6	3	3 0.6	5 ?	3 0.6	, ,	2 0.4	+		3 0.6	5	2 0.4	+	3 0.6	6		3 0.0	.6
Weight	20%	6	?	3 0.6	5 ?	3 0.6	<i>,</i>	3 0.6	,		3 0.6	5	3 0.6	5	4 0.8	8		2 0	.4
Ease of Operation	15%	6	3	3 0.45	5 3	3 0.45	,	3 0.45			3 0.45	5	3 0.45	;	3 0.45	5		3 0.45	ļ 5
Safety	30%	6	5	5 1.5	5 2	2 0.6	<i>j</i>	2 0.6	j.		3 0.9)	2 0.6	5	3 0.9	9		2 0.0	.6
SUM				3.75	5	2.85	j	2.5	غ د		2.85	5	2.65	5	3.5	5		2.5	5


Drive unit: Design #1

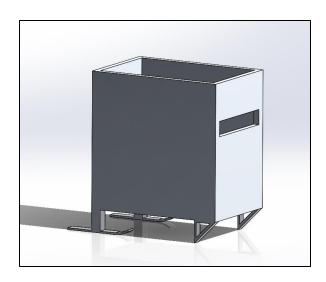

Housing: Design #3

Top Pulley: Design #3

CONCEPT EVALUATION: WEIGHT ANALYSIS FOR DRIVE UNIT

Override Mass Propertie	s Recal	Iculate
☑ Include hidden bodies/cor	mponents	
Create Center of Mass feat	ture	
Show weld bead mass		
Report coordinate values rela	tive to: default	
Mass properties of CG2		
Configuration: Default		
Coordinate system: defa	ult	
Mass = 14.36 pounds		
Volume = 397.42 cubic inche	s	
Surface area = 1192.85 squar	e inches	
Center of mass: (inches)		
X = 0.08		
Y = -4.76		
Z = 20.47		
Principal axes of inertia and p	orincipal moments of	inertia: (pounds * square
Taken at the center of mass.		
lx = (0.00, 0.16, 0.99)		
ly = (1.00, -0.01, 0.00)	Py = 2209.29	
Iz = (0.01, 0.99, -0.16)	Pz = 2216.08	
Moments of inertia: (pounds	* square inches)	
Taken at the center of mass a	nd aligned with the	output coordinate system.
Lxx = 2209.26	Lxy = 1.11	Lxz = 7.12
Lyx = 1.11	Lyy = 2162.35	Lyz = 328.18

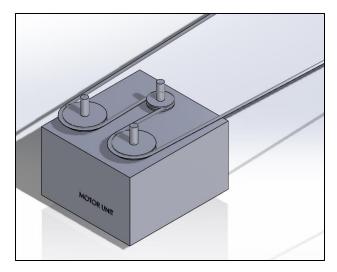
Concept#1:14.36lbs


Concept#2:6.04lbs

Concept#3:32.7lbs

CHOSEN DESIGN

Customer Needs


- Affordable
- Compact
- Lightweight
- Easy maintenance
- Easy transportation
- Safe
- Efficient

Design and 3

Engineering Requirements

- 5-10 Riders
- 15 Horsepower
- Under 300 lbs
- 60 people/hour
- Encased mechanical parts
- Separation of input and output rope
- Steady anchorable frame

Design 1

Design 3

Hallie Eha- 10/5/21 - 21F09_SkiHaus

BUDGET PLANNING

Budget Summary

Budget	Actual	Under(Over)
\$ 1,785	\$ 1,888	\$ (103)

	L	abor	Ма	terials	F	Fixed Costs	3	 			
Expenses	Hrs	Rate	Units	\$/Unit	Material	Travel	Other	Budget	Actual	Under(Ove	er)
Part								\$ 1,635	\$ 1,642	\$	(7)
motor			1	\$300.00				300.00	300.00		-
rope			400	\$1.72				500.00	688.00	(188.	00)
snow stakes			8	\$2.95				50.00	23.60	26.	.40
gear box			1	\$60.00				100.00	60.00	40.	.00
housing unit									-		-
aluminum sheets			6	\$25.54				200.00	153.24	46.	.76
aluminum frame			50	\$4.80				250.00	240.00	10.0	00
pully			1	\$21.49				50.00	21.49	28.	.51
screws			50	\$0.18				10.00	8.98	1.0	02
top pully			2	\$21.49				50.00	42.98	7.	.02
frame stands			2	\$18.40				50.00	36.80	13.2	20
frame			2	\$5.57				15.00	11.14	3.	.86
ratchet straps			4	\$14.00				60.00	56.00	4.	.00
come along			1	\$30.00				30.00	30.00		-
gasoline			5	\$3.09				20.00	15.45	4.	.55
labor								\$ 100	\$ 200	\$ (1	00)
Welding	10	\$20.00						100.00	200.00	(100.	00)
prototyping	25	\$0.00						-	-		-

Projected budget of \$3000

Estimated amount based on bill of materials: \$1888

Assuming total \$3000 is fundraised – excess of \$1000

Manufacture costs would be minimal as most would be done by the team. Welding may be done by sponsor: \$100-\$200 max

Excess money would be used for:

- More material for framing and top pully based on redesign
- Emergency and safety features
- Wheels and transportation devices
- Additional tie downs and mounting hardware

Kailey Lewis - 10/5/21 - 21F09_SkiHaus

QUESTIONS???

